Nonlocal cross-diffusion systems for multi-species populations and networks
نویسندگان
چکیده
Nonlocal cross-diffusion systems on the torus, arising in population dynamics and neuroscience, are analyzed. The global existence of weak solutions, weak–strong uniqueness, localization limit proved. kernels assumed to be detailed balance. proofs based entropy estimates coming from Shannon-type Rao-type entropies, while uniqueness result follows relative method. theorems hold for nondifferentiable, only integrable kernels. associated local system, derived limit, is also discussed.
منابع مشابه
tight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولExistence, Asymptotics and Uniqueness of Traveling Waves for Nonlocal Diffusion Systems with Delayed Nonlocal Response
Abstract. In this paper, we deal with the existence, asymptotic behavior and uniqueness of travelingwaves for nonlocal diffusion systems with delay and global response. We first obtain the existence of traveling wave front by using upperlower solutions method and Schauder’s fixed point theorem for c > c∗ and using a limiting argument for c = c∗. Secondly, we find a priori asymptotic behavior of...
متن کاملAsymptotic Expansions for Nonlocal Diffusion
We study the asymptotic behavior for solutions to nonlocal diffusion models of the form ut = J ∗ u − u in the whole R with an initial condition u(x, 0) = u0(x). Under suitable hypotheses on J (involving its Fourier transform) and u0, it is proved an expansion of the form ∥∥u(u)− ∑ |α|≤k (−1)|α| α! ( ∫ u0(x)x dx ) ∂Kt ∥∥ Lq(Rd) ≤ Ct−A, where Kt is the regular part of the fundamental solution and...
متن کاملA nonlocal reaction-diffusion model for a single species with stage structure and distributed maturation delay
We propose a delay differential equation model for a single species with stage-structure in which the maturation delay is modelled as a distribution, to allow for the possibility that individuals may take different amounts of time to mature. General birth and death rate functions are used. We find that the dynamics of the model depends largely on the qualitative form of the birth function, whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis-theory Methods & Applications
سال: 2022
ISSN: ['1873-5215', '0362-546X']
DOI: https://doi.org/10.1016/j.na.2022.112800